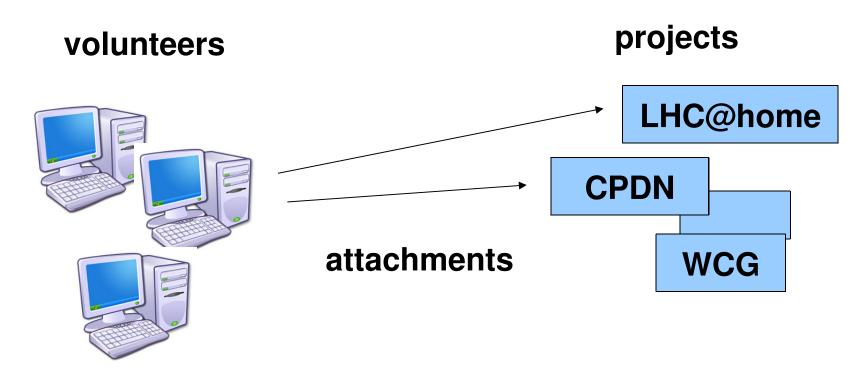
Volunteer Computing: the Ultimate Cloud

Dr. David P. Anderson University of California, Berkeley

Oct 19, 2010


Is Amazon EC2 a good deal?

- Yes, for sporadic or unpredictable workloads
 - e.g., a Super Bowl web site
- No, for a constant processing workload
 - e.g., many types of scientific computing

The yearly cost of 10 TeraFLOPS

- Amazon EC2
 - small instance: \$.09/hour = \$788/year
 - 10 TeraFLOPS = 5,000 instances
 - \$3.94M/year plus network, storage costs
- Build your own cluster
 - ~ \$1.5M/year
- Volunteer computing
 - ~ \$0.1M/year

Volunteer computing

- Scientists create projects using BOINC
- Volunteers install BOINC, attach to project(s)
- Applications are silently downloaded and executed on volunteer PCs

The Consumer Digital Infrastructure

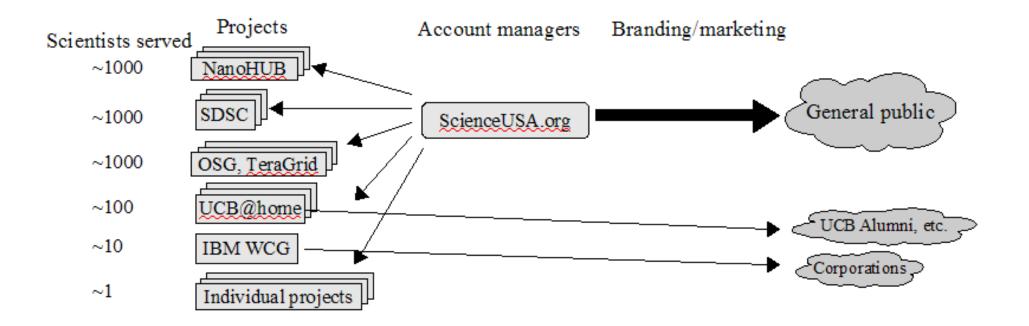
- 1.5 billion PCs
- Graphics Processing Units: TeraFLOPS
- Terabyte-scale storage
- Network speed approaching 1 Gbps
- Ideal for scientific computing!

Consumer versus Institutional computing resources

- Capacity
 - Institutional: ExaFLOPS supercomputer in 5 years?
 - Consumer: ~1000 ExaFLOPS today
- Cost
 - Institutional: ~\$200M/year from funding agencies
 - Consumer: ~\$1 trillion/year from public, selfreplenishing, self-maintaining, self-powering

The state of volunteer computing

- 40 projects
- 500K volunteers
- 800K computers
- 10 PetaFLOPS
 - would cost \$3.94 billion/year on Amazon EC2


Science areas using BOINC

- Biology: protein study, genetic analysis
- Medicine: drug discovery, epidemiology
- Physics: LHC, nanotechnology, quantum computing
- Astronomy: LIGO, radio data analysis; cosmology; galactic modeling
- Environment: climate modeling, botanical ecosystem simulation
- Math

Organizational issues

- Single-scientist projects: a dead end
 - Barriers to entry are too high
 - Wrong marketing model
 - Doesn't handle sporadic requirements
- Umbrella projects
 - IBM World Community Grid
 - Campus-level (UCBerkeley@home)

A better model: ScienceUSA.org

How to realize this?

Conclusion

- For most scientific computing, volunteer computing is far cheaper than either clouds or clusters
- What's the catch?
 - need to attract volunteers
 - need to learn a new technology (BOINC)
- Related idea: scientific crowd-sourcing
 - Use human brains rather than PCs
 - Stardust@home, GalaxyZoo, etc.